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INTRODUCTION

All-ceramic (silicon nitride) spin and gimbal bearings were designed and fabricated for use
in a miniature infrared (IR) seeker. Ceramic bearings were used to improve the system load
capacity over an all steel bearing design; to eliminate the potential of fretting corrosion and to
decrease friction, thus improving system performance. As part of this development program,
design margin testing was initiated to determine the maximum load capacity of the spin bearings
after a redesign of the spin bearing attachment mechanism. Reported herein are the results of a
detailed fractographic analysis performed on one of the tested spin bearings. By identifying the
load-limiting failure mechanism of this spin bearing design, future all-ceramic bearing applications
can be improved based on information provided by the fracture analysis.

SILICON NITRIDE HISTORY

Silicon nitride has long been recognized as a ceramic with great potential to replace steel
bearings in certain applications in the machine tool, aerospace, and biotechnology industry. 1,2
Silicon nitride is attractive for these applications because, when properly fabricated, it possesses
the following characteristics:

- Low density
- Low friction coefficients
- High hardness and strength (flexure and compression)
- Excellent corrosion resistance
- Low thermal expansion and conductivity
- Ability to maintain these properties up to ;I 000oC

Studies1 ,3 have shown that a significant improvement in bearing fatigue life can be
achieved when steel balls are replaced with silicon nitride balls. The failure mechanism of the
ceramic is as important as improved fatigue life in determining if a ceramic bearing can be used.
Unlike most other ceramics which fail catastrophically in rolling contact fatigue tests, silicon
nitride has been shown to fail due to spallation, the same failure mechanism as its steel
counterpart. 4 Additionally, silicon nitride balls have successfully operated in a lubrication starved
environment 5 -7 and produced less heat than similar steel bearings.8

Presently one of the leading commercial ceramic bearing materials is a hot isostatically
pressed (HIPed) silicon nitride (NBD-200). A majority of the early ceramic bearing studies
focused on a hot-pressed silicon nitride (NC-132). 1,3-6 Both of these silicon nitrides contain
approximately I w/o MgO to promote densification. The bearing work in the 1970's and 1980's
coincided with the development and evaluation of silicon nitrides, especially NC-I132, for other
structural applications (i.e., heat engines). As a result it was convenient to conduct bearing
studies using NC- 132, because this material was readily available, extremely consistent and a
wealth of property data was being generated. 9 -12

NBD-200 is a third-generation of NC-132. (NBD-100 is the second-generation material.)
As stated previously, this material is HIPed, rather than hot pressed, which eliminates any



anisotropic properties. In addition, the HIPing operation allows for near-net-shape pieces to be
produced, thus greatly reducing the amount of machining.

MATERIAL

The ceramic bearing system was made from a Norton Advanced Ceramics, East Grandby,
CT (NAC) (formerly CERBEC) silicon nitride, tradename Noralide NBD-200, which contains
approximately I w/o MgO as a densification aid. The bearing components were fabricated to
near-net-shape by hot isostatic pressing. The balls were precision finished by Norton Advanced
Ceramics while the races were fabricated into cylindrical blanks by NAC and then machined by
Miniature Precision Bearings, Keene, NH (MPB) to final dimension through diamond grinding.

The properties of this silicon nitride, as provided by the manufacturer, are listed below:

Table 1.
Properties of NBD-200

Density (g/cc) 3.16
Elastic Modulus (GPa) 320
Poisson's Ratio 0.26
Vickers Hardness (10Kg) (GPa) 16.6
Room Temperature Strength

Flexure, Mean - MIL STD 1942 (MPa) 800
Weibull Modulus 9.7

Tensile, Me, As HWPed (MPa) 400
Compressive, Bulk (GPa) 3
Hertz Compressive, Ball on Flat (GPa) 28

Fracture Toughness, (MPa*04m) 4.1
Thermal Expansion Coef. -l7O0Cto2 0°c (10- 6/oC) .43

20 0C to I0000C 2.9
Thermal Conductivity ioooc (W/m-K) 29.3

5000c 21.3
1o0ooc 15.5

Maximum Use Temperature (oC) 1000

ALL-CERAMIC BEARING APPLICATION

Miniature all-ceramic (NBD-200 silicon nitride) gimbal and spin bearings were developed
for a common IR seeker, Figure 1, to be employed in the SPARROW-7P and SM-2 Block III
missile systems. The gimbal and spin bearings are part of a gyro-optics assembly (GOA), Figures
2 and 3, which performs as both a free gyro and optics system for the seeker.

The main driving force behind the development of the all-ceramic bearings was to increase
bearing load capacity. The original seeker design consisted of steel (440C) gimbal and spin
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Gimbal Ring
(Inconel 718)

Outer Gimbal

(Inconel 718)

Gimbal Stop
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A Spin Axis
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Spin Bearing
(Si3 N4 )

(Inconel 718)

Gimbal Bearing
(Si3 N 4)

Figure 2. Schematic of the gimbal assembly showing the location of the all-ceramic bearing systems.
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Figure 3. Gimbal assembly containing all-ceramic gimbal and spin bearings.

bearings whose load capacities were marginal for the system requirements. The steel gimbal
bearings were full-complement (maximum number of balls in the race) in order to achieve the
highest possible load capacity. This full-complement condition, however, increases bearing
friction, which degrades the GOA performance. The all-ceramic gimbal bearings were designed
with fewer balls to lower friction yet achieved almost twice the Hertzian load capacity. The basic
design of the ceramic spin bearings was similar to that of the steel system. (Hybrid bearings were
not considered for this application because they typically have load capacities lower than the all-
steel system due to thc combination of a "hard" ceramic ball and a "soft" steel raceway.)

Other advantages of the all-ceramic system were the ability to reduce magnetic coupling
between the gimbal assembly and the gyro magnet, and effectively eliminate fretting corrosion
(microwelding of the ball to the raceway). The latter has been seen to be a problem in other
bearing applications were all-steel systems are exposed to long-term vibrations. 13

BEARING/GOA ASSEMBLY PROCEDURE

The 1R seeker GOA, without the mirror magnet and optics, is shown in Figure 3. This
assembly consists of two types of ceramic bearings: one duplex spin bearing, with each raceway
containing six balls, Figure 4, and four gimbal bearings, each containing six balls, Figure 5. Ball
spacing in the spin bearing is maintained by a lubricant-impregnated polyimide retainer. The
gimbal bearing balls are caged in a beryllium-copper retainer and a hydrocarbon lubricant is
injected. Both bearing lubricant systems were the same as used in the steel bearing systems.

5
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The ceramic bearings are assembled in the same manner as the steel bearings. All raceway
critical dimensions are measured, and ball sizes are selected for each raceway to obtain the correct
preload. Starting torque, average running torque, and peak running torque are then measured for
each bearing.

In the seeker GOA, both races of the gimbal bearings are bonded in place to their
corresponding gimbal components. 14 The spin bearing outer race is attached to the inner gimbal
with a flexible adhesive while the inner race is selectively fitted to its mating part. Friction and
deflection are measured for both gimbal and spin bearings to insure that they have been installed
and preloaded correctly. The optics are then attached and the GOA is installed into a seeker.

TESTING

The design margin tests were initiated to determine the maximum load capacity of the
GOA after a redesign of the spin bearing attachment mechanism. Six spin bearings were selected
for testing. A pre-test examination was performed using an optical-microscope to inspect the
outer and inner races of the spin bearings for possible damage. The bearings were then
reassembled and built into engineering GOA's simulating actual hardware. The GOA containing
the spin bearing referenced in this paper was subjected to system flight vibration profiles at -37oC
with a peak response of 85 G's. After this exposure, the vibration input load levels were increased
by 3 dB until the GOA failed. Because the GOA was not operating during the test the bearings
were not spinning when failure occurred. After failure the GOA was disassembled and a fracture
analysis was performed.

RESULTS

Pre-Test Examination

No evidence of damage on the raceways was observed, but some machining striations
were found on the surfaces above and below the raceways. It was also noted that one of the
chamfers on one of the inner races had not been machined. This information was helpful during
the reconstruction of the inner races.

Design Margin Test Results

The engineering GOA containing the spin bearing evaluated herein survived the required
system loading vibration levels. The unit failed at a loading of 270 G's peak during exposure to
increasing loading levels. This failure load was • 40% higher than the system load requirements.

Fracture Analysis Results

Visual Examination - This examination revealed no damage to the outer race or the balls
but the inner races fractured into many pieces. Upon reconstruction it was found that several
pieces were missing from both inner races; however, this did not hinder the determination of a
possible crack initiation site or the direction of crack.propagation. Figures 6 and 7 are montages

8
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of each reconstructed inner race. The race in Figure 6 is labeled as End #1. This is the forward
race in the seeker, see Figure 2. The other race, Figure 7, is labeled as End #2.

The reconstruction of End #1 showed that there were two macrocracks which combined
to traverse the entire circumference of the raceway. It appears that both macrocracks initiated in
the area labeled A with one macrocrack propagating to the left and the other to the right. This is
confirmed by inspecting the entire crack propagation pattern and noting the intersection of the
cracks at point C. One macrocrack propagated a short distance to the left of area A and was the
first to terminate, at the top of the race, (point B). The second macrocrack propagated to the
right of area A and traversed the remaining circumference of the raceway and terminated at point
C when it encountered the free surface created by the first macrocrack.

Six areas of damage can also be seen in Figure 6. These damage areas coincide with the
approximate location of the six balls (marked by the X's in the figure). The amount of damage in
these areas appears to diminish as the macrocrack proceeds away from the initiation site.

Reconstructing End #2 was significantly more difficult than End #1 because there were
many pieces missing, Figure 7. Even so, there was enough evidence to indicate that, as in End #1,
two macrocracks initiated in one location (A) and propagated in opposite directions to traverse
the circumference of the raceway. It was beyond the scope of this analysis to determine where
the two macrocracks may have intersected. There were areas of damage in End #2, similar to
those seen in End #1, which may coincide with the location of the balls, but the correlation was
not as clear as in End #1.

Scanning Electron Microscope - Analysis with the Scanning Electron Microscope (SEM)
focused on End #1 since most of the pieces were available and there are indications that both
inner races fractured in a similar manner.

Three parts, labeled 1, 2 and 3 in Figure 6, of the End #1 inner race were examined.
Figures 8 and 9 show the fracture surface of part 1. Both photographs reveal the presence of a
series of machining related microcracks which are approximately 25-30 pm deep and connected
to the raceway surface. An examination of this fracture surface at an angle, Figure 10,
demonstrates that these microcracks have linked together in a step-wise fashion. Characterization
of the fracture origin is as follows: Machining Damage, located at the surface with a depth of 25-
30 pm, (MSS, surface, 25-30 pm deep).

The SEM examination of parts 2 (Figure 11 and 12) and 3 (Figure 13) show that the
texture of the fracture surface near the location of a ball is very rough but it becomes smoother as
the crack proceeds away from this location. The texture will become rough again when the next
ball is encountered. The outer edge (raceway) of the fracture surface also is very rough, but the
surface texture becomes smoother as the crack proceeds through the raceway cross-section.

Analysis of all surfaces and the characterization of the fracture origin was conducted
according to the procedures and guidelines outlined in Military Handbook 790, "Fractography and
Characterization of Fracture Origins in Advanced Structural Ceramics".
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Figure 8. Photograph of the fracture surface of part 1 from End #1.
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Figure 10. Photograph of the fracture surface of part I from End #I when viewed at an angle.
The open arrows show the "steps" of the crack propagation while the solid arrows indicate

microcracks in the raceway.

Stress Analysis

An estimate of the stress necessary to propagate a microcrack in this material was made
using the following fracture mechanics equation:

Kic
Ca =-

where: a is the stress at fracture; K1c is the fracture toughness; Y is the unitless shape factor for
the crack and a is a measure of the crack size, in this case the depth.

A stress range of 535 to 586 MPa was calculated based on a toughness of 4.1 MPa*q/m
(from Table 1), microcrack depths of 25 and 30 pm and Y = 1.4 (for a semielliptical crack at the
surface). This stress range falls between the flexure and tensile strength values listed in Table 1,
however, it is very close to the biaxial strength value of 500 MPa reported by Quinn and Wirth15
for NC-132. It appears that biaxial strength data is a better indication of the strength of this
material under these specific bearing conditions.
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Xe

Figure 12. View of part 2 from an angle revealing the rough texture of the fracture surface just
below the raceway surface and the smoother texture as the crack proceeds away from the surface.

X indicates a ball location and the white arrow the direction of crack propagation.
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DISCUSSION

The fracture analysis of this failed ceramic bearing system raised the following questions
which will be answered in this section:

1) Why did the inner races fracture?
2) What caused the macrocracks to initiate?
3) How did microcracks get in to the rr~terial?
4) What can be done to reduce or eliminate these microcracks?

1) Why did the inner races fracture? - Based on the fractographic analysis fracture
initiated at or very close to a ball location in the raceway of both inner races. Since the balls were
held in place during the test the stresses created by a sphere on a plate can be used to describe
why the inner races fractured but the outer race did not. When a sphere is compressed onto a
plate the forces created in the plate are tensile as well as compressive. The compressive forces are
perpendicular to the ball/plate contact area while the tensile forces act radially in this area.

In this bearing system it is assumed that the force of the ball on the outer raceway is the
same as that on the inner raceway. This results in a different stress beneath the ball in each
raceway due to a difference in the ball/raceway contact area. The contact area of the outer
raceway is greater than that of the inner raceway because the direction of the axial and radial
curvature of the outer raceway is the same as the ball. Thus the distribution of the tensile stress
will approach a circle since the these stresses will be essentially equal in all directions. This is not
the case for the inner raceway since the axial curvature of the raceway is in the same direction as
the ball but the radial curvature is in the opposite direction. This results in an elliptical stress
distribution with the highest tensile stresses aligned in the radial direction.

This not only accounts for why the inner races fractured instead of the outer race, but also
explains why the macrocracks traversed the circumference (radial axis) of the inner raceway.

2) What caused the macrocracks to initiate? - The fractographic evidence points to the
growth and coalesce of microcracks beneath or very close to a ball/raceway contact area as the
beginning of fracture. A series of these microcracks are quite obvious on the fracture surface of
part 1, see Figure 9. The rough texture of the fracture surface on the outside edge of the
raceway, Figures 11 and 12, and at or very near the location of a ball, Figure 13, also indicates
that microcracks were growing. The tensile stresses in the ball/raceway contact area promoted
the growth of these microcracks until they coalesce to form the macrocracks which ultimately
resulted in fracture.

The growth of microcracks can also account for the variations in the amount of damage at
each ball location. First the stress at each ball location may be different, probably less than the
stress in area A, which will affect how many and too what extent microcracks will grow. The
interaction between the micro- and macrocracks will also influence the amount of damage. As the
macrocrack propagates it will encounter the microcracks beneath and around each ball. The
energy supplied by the macrocrack will cause many microcracks to grow simultaneously. Thus

18



the piece missing at each ball location (XI, X2, X5 and X6) is probably not a single piece but
rather many pieces that were created due to this interaction. Each interaction will reduce the
energy of the macrocrack resulting in less damage at the next ball location. This explains why the
damage at X3 and X4 is significantly less than at the other ball locations.

3) How did microcracks get in to the material? - Most ceramic components will require
some degree of machining (typically diamond grinding) to produce a finished product. Diamond
grinding can introduce microcracks in to the ceramic which adversely affect the performance of
the component. In order to minimize this damage a step-wise grinding process is commonly used
where in the initial grinding is done with a coarse grit wheel followed by grinding with finer and
finer grit wheels. The finer grinding steps attempt to remove any damage done by the coarser
grinding steps. Unfortunately the initial coarse grinding steps can produce subsurface
microcracks which are not removed during the subsequently finer grinding steps but the evidence
that damage was done will be removed. (It should be noted that grinding with fine grit wheels
can also cause damage.) Studies by Mecholsky et. al. 16 and Rice, et. al. 17 have shown that
grinding can reduce the strength of glasses and polycrystalline ceramics. In bearings Dalai3

reported that the fatigue life ofNC- 132 balls will depend on the type of diamond grinding
procedure, while Baumgartner 4 found that the growth of microcracks leads to spall formation in
NC-132 and in order to increase the life of the bearing the amount of microcracks must be
minimized.

The first fractographic indication that the microcracks in this system were related to
machining was the appearance (uniform shape and size) of the series of subsurface microcracks in
Figure 9. Similar machining induced cracks have been shown to limit the strength of silicon
nitride 18 and other ceramic materials. 19 Second was the step-wise propagation of the crack (see
Figure 10) in part 1. Mecholsky et. al. 16 showed that grinding introduces two types of
microcracks: one which is parallel to the grinding direction and one which is perpendicular to the
grinding direction. The parallel microcracks are typically more severe. The grinding direction of
the raceways is along the radial axis. Based on the stress state discussed previously the axial
tensile stresses appear to be sufficient to grow the parallel (more severe) microcracks while the
radial tensile stresses grow the perpendicular microcracks. These growing microcracks then link
together, with the parallel microcracks becoming the steps and the perpendicular microcracks the
risers, resulting in the step-wise propagation of the crack.

4) What can be done to reduce-or eliminate these microcracks? - The most obvious
answer is to used an alternate machining process that does not introduce microcracks in to the
ceramic. Unfortunately at present, there are no alternatives to diamond grinding of silicon nitride.
However, the following recommendations to adjust the machining procedure may be sufficient for
this ceramic bearing application.

1) Develop a machining procedure specifically for the raceways.
2) Reduce the material removal rate during coarse grinding.
3) Eliminate grinding with coarse grit wheels.

These recommendations may not be cost-effective or even feasible. Thus an alternative

19



suggestion would be to subject the NBD-200 material to a post-machining heat treatment.
Previous work on NC- 13211,20 has shown that short duration exposures (< 10 hours) at
temperatures approaching 12000C result in an increase in the room temperature strength. This
increase is due to the relaxation of the residual stresses created during machining and/or a change
in the acuity of the cracks in the material.

CONCLUSION

Machining-related microcracks were shown to limit the load capacity of an all-ceramic
bearing system which failed during design load margin testing. The stress imparted on the inner
raceway by the ball caused these microcracks to grow. This growth ultimately resulted in the
formation of macrocracks which traversed the circumference of the raceway. The effects of these
microcracks may be reduced by adjusting the machining parameters or by subjecting the
components to a short duration post-machining heat treatment.
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